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A special purpose RISC (reduced instruction set computer) 
microprocessor for programmable logic controllers (PLC), named 
PLCRISC, is proposed. To develop an optimal PLCRISC, we 
analysed existing PLC programs currently used in factories, with 
special attention to the instruction execution characteristics and 
features required for a high performance PLC processor. Based on 
this analysis, an optimal RISC-style instruction set and an 
architecture suitable for the required features are suggested. In 
particular, the instruction format, the instruction pipeline, and the 
detailed internal architecture are the significant characteristics of 
the proposed PLCRISC. The performance enhancement achieved 
with a PLCRISC is seen from a straightforward evaluation. ASIC 
implementation with VHDL is also discussed. The PLCRISC is 
under fabrication in a 0.8/~m CMOS technology. 
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The programmable logic controller (PLC) was originally 
developed as a sequential control device to replace electro- 
mechanical relays in factories, and it is now being used for 
numerous applications, including in factory automation in 
chemical processing, manufacturing, and mining 1. With 
the progress of micro-computing technology, the PLC is 
improving at a very fast pace. Factories are also expanding 
and becoming more complex at a very fast pace. Ideally, 
the PLC will improve in step with factory expansion. It must 
provide more computing power and functions. 

In many industries, a commercial general purpose 
microprocessor is used as the central processing unit of the 
PLCs. Indeed, many powerful microprocessors provide 
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high performance in general purpose applications. 
However, such processors cannot guarantee the high 
performance required for PLCs for the following three 
reasons. First, PLCs operate best with bit type data 
structures, while general purpose microprocessors are 
designed to handle byte or word type data 2. Therefore, if 
the PLC employs a general purpose microprocessor, a bit 
type operation must be made of several instructions. This 
results in significant performance degradation. 

Second, for control purposes, the PLC receives large 
volumes of input data that change very frequently accord- 
ing to the states of a controlled system. Since the PLC must 
use these data as operands of its instructions instead of the 
internal data that are stored in the registers, the PLC 
processor must fetch the data from the memory for every 
instruction. Thus, the memory traffic in PLCs becomes very 
heavy. But general microprocessors do not adequately 
meet this high memory bandwidth, because they have an 
architecture suitable for manipulating data in internal 
registers. Therefore, an improvement in memory bandwidth 
is required to enhance the overall performance of PLCs. 

Third, for high performance PLCs, an efficient interactive 
mechanism between bit type operation and word type 
operation must be available, which will be explained in 
detail in the following section. General purpose 
microprocessors do not have this interactive mechanism. 

An approach to overcome the above problems is to use a 
special purpose processor. In recent years, several new 
architectures of the PLC processor have been proposed. 
One of them is to use a dedicated hardware logic which is 
based on the array processor architecture 2. This processor 
can execute bit instructions very fast due to optimization of 
bit operations. However, it has difficulty in executing word 
instructions and also has an inflexible configuration. 
Another type of architecture is to use a memory-based 
implementation 3. This processor can perform fast parallel 
computation, and its structure is very simple. However, it 
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requires large memory fields because its data structure is 
very sparse and many bits of the data are used ineffectively. 

A more efficient method to make a high performance 
PLC is to develop a special purpose processor in order to 
meet application-specific requirements obtained through 
the analysis of existing PLC programs. This method is 
suitable especially for a special purpose processor that 
adopts a RISC architecture 4'~. Recently a RISC-based PLC 
processor was proposed by Toshiba ~', but Toshiba did not 
address the analysis of the PLC program characteristics. 
Moreover, Toshiba could not describe an instruction set 
suitable for high performance PLCs. 

In this paper, a special purpose RISC microprocessor for 
PLCs, named PLCRISC, is proposed. The PLCRISC is 
developed to have a limited and simple instruction set, 
and it utilizes hardware resources optimally to speed up 
the most frequently used instructions through highly 
efficient VLSI design technology 4. In the PLCRISC, a RISC- 
style instruction set is selected optimally through the 
analysis of many PLC programs currently used in factories. 
Thus, the PLCRISC supports more general instructions than 
can the above processors, and consequently it can provide 
a more flexible programming environment. Several 
function units that balance bit operations and word 
operations are implemented in order to enhance the 
overall processing speed. 

In the next section, we characterize existing PLC 
programs in use for various factory automation. From this 
characterization, we can suggest the features required for 
high performance in PLC processors. In the following 
sections, the instruction set, the instruction format, the 
instruction pipeline, and the internal architecture of the 
PLCRISC are described. Lastly, performance evaluation and 
development in ASIC are discussed. 

C H A R A C T E R I S T I C S  OF PLC P R O C E S S O R S  

In this section, the execution characteristics of PLC 
programs are described, and features required for a high 
performance PLC processor are suggested. 

PLC p r o g r a m m i n g  

Many programming languages are available for PLCs, such 
as the instruction list (IL), the structured text (ST), the 
function block diagram (FBD), and the ladder diagram 
(LD) 7. Among them, the LD language is the most popular, 
and it has a graphical form that is suitable for the 
representation of a sequential control system. The LD 
language is depicted by a diagram of matrix type symbols 
that represent relays, switches, solenoids and lamps, etc. 
This graphical language, however, is not easily executed 
directly by a PLC processor. Generally, the programs 
written in the LD language are converted to mnemonic PLC 
instructions for execution. Figure I shows an LD language 
program and its corresponding mnemonic PLC instructions. 

Although the mnemonic instructions are supported 
somewhat differently by each PLC manufacturer, the 

R01 R02 R04 
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--t I -[  ADO w00,vv01,w02 F- 
(a) a ladder diagram program 

Figure 1 

STR R01 
AND R02 
OR R03 
OUT R04 
STR R05 
ADD W01 ,W02,W03 

(b) converted PC instructions 

An example of a ladder diagram program 

typical PLC will usually support two primary groups of 
instructions: bit instructions and word instructions. In the 
bit instruction group, bitwise logic instructions, such as 
START, AND and STORE, are included. These instructions 
have a one-to-one correspondence to the relay logics that 
were used as sequential control devices in the past. Word 
instructions consist of compare, arithmetic, move, and flow 
control instructions g. The word instructions can be used in 
functions such as PID control, user interface, and 
communication. 

The word instructions are very similar to the instructions 
of general purpose microprocessors. However, in PLCs, the 
word instructions can be tightly coupled with bit 
instructions, and thus they have different execution patterns 
compared to general purpose microprocessor instructions. 

Frequency  of PLC instruct ions 

Because PLCs are used in a variety of applications, such as 
chemical processing, manufacturing, mining, pulp and 
metal processing, each unique PLC requires control 
programs suitable for its specific application. These control 
programs have different execution patterns. Furthermore, 
because the users of PLCs have different programming 
styles, the frequency of use of PLC instructions varies 
greatly among users. 

To analyse the behaviour of PLC programs, we 
investigated many PLC programs currently used in 
factories. We simulated their execution on a computer and 
stored the results. In particular, we focused on several 
measurements: frequency of instructions, frequency of 
addressing mode, and execution sequencing ~. All of the 
measurements are dynamic measurements that are 
obtained by counting the actual number of executions for 
each instruction. Such measurements can provide more 
useful information than static measurements, which 
merely count the source codes of the programs. Among 
these measurements, the frequency of PLC instructions, a 
key parameter, can be presented as a percentage of total 
instructions (see Table 1). 

For efficient execution of the instructions used frequently 
in PLC programs, a special processor is needed. The 
frequently used instructions in PLC programs, such as bit 
instructions, move instructions and compare instructions, 
must be included in the machine instruction set of the 
special purpose processor to obtain a high performance 
PLC. Table 1 provides useful information when designing 
the machine instructions of a PLC processor. 
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Table 1 Frequency of PLC instructions 

Instruction type Percentage 

Bit instruction 69.0 
Timer, counter 1.4 
Move 12.0 
Compare 9.3 
Arithmetic 6.1 
Flow control 2.2 

Bit ins t ruct ions  of PLCs 

Analysis of PLC instructions shown in Table 1 shows that 
two-thirds are bit instructions. This occurs because the PLCs 
have been used as sequential controllers replacing the 
electro-mechanical relays. Because the states of relays can 
be represented by only two states, ON and OFF, the bit 
instructions use bit type data structures as their operands and 
perform bitwise logic operations. However, general purpose 
microprocessors have byte or word data structures, and thus 
they are fundamentally designed for types of instructions 
other than the bit instructions of the PLC programs 2. 

Generally in commercial PLCs, the bit instructions of 
PLC programs are emulated by several instructions of the 
general purpose processor. This emulation produces a large 
software overhead, namely, much more software 
programming is provided than is required. Because the bit 
instruction is most frequently used in PLC programs, the 
overhead degrades the performance of PLCs greatly. 
Therefore an increase in the execution speed of bit 
instructions is one of the most important factors in 
improving the overall performance of a PLC processor. 

Execut ion  s e q u e n c e  

For complete execution of a PLC program, the PLC samples 
input signals from the controlled system, process the value 
of the signals according to the preprogrammed logic, and 
update the values of output signals. This procedure is 
called 'one scan'. The PLC repeats this scan cycle 
continuously. 

Because the PLC replaced relay sequential logic where 
the relays operated sequentially, the PLC program tends to 
be executed straight from top to bottom without a loop or 
branch during one scan cycle. At least this is true for a 
program that consists of only bit instructions. Table 2 shows 
the frequency of executions for each line of source code of 
the programs analysed. Almost all instructions are executed 
only once during one scan cycle. This is because few flow 
control instructions are used in PLC programs as shown in 
Table 1. 

In general purpose microprocessors, most programs do 
not access all instruction codes uniformly. This rule is 
called the principle of locality t°. Based on this hypothesis, 
the memory hierarchy using a cache memory can produce 
better performance. But in the PLC, there is no locality, as 
shown in Table 2. Therefore the implementation of a cache 
memory in a PLC processor is less efficient. 

Implementation of a RISC microprocessor: G S Rho et al. 

Table 2 Executir)n number of each line 

Number of executions during one 
scan cycle 

Percentage 

Only once 98.1 
Twice 1.8 
More than twice 0.1 

M e m o r y  b a n d w i d t h  

In factories, the PLC is connected with sensors and 
actuators for receiving input data from the sensors and 
sending driving commands to the actuators. The PLC 
processor receives the input signals and stores them into 
the main memory. After the logic programs are processed 
with the given input data in the main memory, the output 
values are updated and sent to actuators and ultimately 
reflected in changes to the external system. During the 
execution of the PLC program, most of the PLC instructions 
require memory resident operands. This is especially true 
for the bit instructions that are frequently used in PLC 
programs and fetch their operands for every execution. 
Thus in PLCs, many memory references are needed. Table 
3 shows the occurrence of the types of operands, which 
was obtained by the examination of the dynamic behaviour 
of PLC programs. 

The memory resident operand needs an operand fetch 
cycle (OFC) and results in a conflict with an instruction 
fetch cycle (IFC). Because most of the processors in 
commercial PLCs have a single external bus, the instruction 
and the operand must be fetched sequentially. Figure 2 
compares the sequential execution timing of a single bus 
pipeline architecture machine with the parallel execution 
timing of a separated bus pipeline architecture machine. As 
shown in Figure 2, if a processor has two separate buses for 
instruction and operand, the two cycles can occur in 
parallel. To meet the high memory bandwidth shown in 
Table 3, a processor that has two separated buses must be 
employed in the PLC. 

Table 3 Frequency of operand sources 

Operand type Percentage 

Memory reference 75.0 
Immediate scalar 20.0 
No operand 5.0 

bit instructioni I IF I ID I Mu I 
word instructioni+l I IF I ID I ME I WB I 

word instruction i+2 [ IF [ ID I ME I ~  I 

word instruction i+3 I IF I ID I ME I wB I 

IF : Instruction Fetch ME : Memory fetch & Execute 
ID : Instruction Decode MU : memory fetch & bit result update 

VVB : Write Back 
Figure 2 Sequential and parallel execution 
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t__~ [  } IF (R001 = 1) 
ADD W007 = 3 + W008 

ADD W007 = 3 + W008 ELSE 

No Operation 

Figure 3 Execution of a word instruction 

Interaction between bit and word instructions 

In PLCs, the word instructions, such as addition, 
multiplication and shift, are related closely with the bit 
instructions. For example, the branch instruction checks 
not only the branch condition but also the value of a bit 
accumulator, which stores the resulting data of bit 
instructions. As another example, both memory updating 
and data writing to the registers are decided by the value of 
the bit accumulator. As explained above, the word 
instructions of PLCs are executed conditionally according 
to the result of a bit instruction. Figure 3 shows an example 
of a word instruction in the LD language and its 
corresponding execution procedure. 

Generally in commercial PLCs implemented with typical 
microprocessors, the conditional execution of a word 
instruction is performed in software using test and jump 
instructions. Since it takes too much time, the conditional 
execution of a word instruction produces a software 
overhead in typical PLCs. 

For the efficient interaction between bit and word 
instructions, a bit processing unit must be included in the 
PLC processor, and special hardware logic for the fast 
decision making on the conditional execution of word 
instructions must be implemented. Furthermore, in a PLC, a 
bit instruction often needs an operand from the word 
instructions, for example, after a compare instruction is 
executed with word data, the following bit instruction takes 
the result as its operand. Thus the PLC processor must 
provide a method where the results of some word 
instructions can be used as operands of bit instructions. 

INSTRUCTIONS OF THE PLCRISC 

Using the analysis of PLC execution characteristics 
described above, we can design an optimal RISC-style 
instruction set, particularly ensuring that it efficiently 
accommodates the predominance of bit instructions in 
PLCs. Most currently used P L C s  derive from 
microprocessors that have complex control logic and word 
instructions. The improvement that a PLCRISC offers is that 
it has a core of simple and limited instructions in a fixed 
format. This core instruction set can manage almost all of 
the required execution of PLC instructions. 

During the design and implementation stage of the 
PLCRISC instruction set, the decision between what is to be 
implemented in hardware and what is to be done in 
software has been made. Some PLC instructions require 
many execution stages, different instruction formats, and 
various addressing modes. For example, one particular 
complicated multiplication instruction requires three 
memory references, two for operand fetches and one for a 

result writing. A processor that has such PLC instructions as 
its inherent instruction is very difficult to design, and its 
implementation costs are very high. And because such 
processors have very complex control logic, the bit 
instructions that carry out simple operations cannot be 
executed quickly and hardware resources cannot be 
utilized optimally. Therefore, for fast execution of PLC 
instructions, a simple and limited instruction set that has a 
fixed format is more useful. 

Instruction set 

The PLC instructions that are used frequently in the PLC 
programs, as shown in Table 1, were selected to be 
implemented in the PLCRISC. Since the bit instructions of 
PLC programs have simple semantics, all bit instructions 
are implemented as the instructions of the PLCRISC. Still, 
some complicated PLC word instructions must be executed 
in the PLCRISC, which has a RISC architecture. This is a 
difficult obstacle, but it can be overcome by breaking down 
the necessary PLC word instructions into several simpler 
instructions that the PLCRISC can manage efficiently. 

In the PLCRISC, more than 80 instructions, such as big 
logic instructions, memory access instructions, data move 
instructions, arithmetic instructions, shift and rotate 
instructions, compare instructions, and flow control 
instructions, are implemented. Several representative 
instructions of the PLCRISC are shown in Table 4. 

Table 4 Part of the PLCRISC instruction set 

Opcode Operands Description 

STR $Bit_addr Start rung 
AND $Bit_addr And bit 
OR $Bit_addr Or bit 
INIOUT $Bit addr Initializer out 
OUT $Bit_addr Out bit 
MCS Master control set 
MCR Master control reset 
LOAD.I(h) Reg,#const Load immediate 
STORE.I(h) $W addr, Reg Store absolute 
MOVE Src,Des Move data between regs. 
ADD Srcl ,Src2,Des Add 
SUB Srcl ,Src2,Des Subtract 
MUL Srcl ,Src2,Des Multiply 
DIV Srcl ,Src2,Des Divide 
RLC Srcl ,Src2,Des Rotate left with carry 
SHL Srcl ,Src2,Des Logical shift left 
BSET Bit_pos, Des Bit set 
STRCEQ Srcl ,Src2 Compare equal (TOS) 
BIN Src,Des Convert BCD to binary 
BCD Src,Des Convert binary to BCD 
LOOP Reg,#LABEL Loop if reg is non zero 
JMP Reg Jump indirectly 
CALL #LABEL Subroutine call indirect 
RETI Return from interrupt 
TRAP Software trap interrupt 
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While almost all bit instructions of a PLC program have 
one-to-one correspondence to the bit instructions of the 
PLCRISC, bit output instructions and pulse instructions are 
substituted by two or three bit instructions, as they access 
memory twice or three times respectively. As in RISC 
processors used for other applications, only load and store 
instructions can access memory. Usually all bit instructions 
require absolute addressing operands. And the word 
instruction that needs a complex addressing mode is 
broken into several instructions that have a simple addres- 
sing mode. Thus absolute, immediate, and register indirect 
addressing modes are implemented in the PLCRISC. 

Move instructions are supported to transfer data between 
internal registers. For word arithmetic operations, 12 
arithmetic and logic instructions are defined, including 
addition, subtraction, multiplication, shifting, rotating, and 
binary-BCD conversion. In the PLCRISC, the result of a 
compare instruction is stored in the bit accumulator, and 
thus any word instruction can be conditional if it follows 
the compare instruction. Seven flow control instructions are 
included. The (:all instruction saves the return address at 
the special register. The branch instruction is not expected 
to be taken, and the branch condition is checked at an 
early stage to reduce the branch penalty. 

In the PLCRISC, the floating point operations are 
performed using an external coprocessor. The choice of 
adding an external coprocessor is optimal because few 
floating point instructions are used in PLC applications. 
Possibly, a special application or intelligent control 
algorithm sometimes requires floating point operations. 
Thus, judging from the perspective of performance 
improvement versus hardware requirements, an 
implementation of a floating point unit in the PLCRISC is 
less efficient. Though the PLCRISC has no coprocessor 
instruction, it supports the interface with the floating point 
coprocessor in the form of a memory instruction. The 
information that is needed for a floating point operation is 
encoded in the memory access instruction and transferred 
to the external floating point coprocessor. 

In a RISC processor, the branch mechanism has one of 
the largest impacts on the performance of the machine. The 
branch instruction breaks the pipelined streams, so 
minimization of their effects is important. In the PLCRISC, 
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the branches are taken after checking both the result of a 
bit instruction and the corresponding branch condition, as 
mentioned earlier. To do so, compare instructions are 
separated from branch instructions, and the condition 
check is performed in the early pipeline stage of a branch 
operation. 

Figure 4 represents the instruction formats of the 
PLCRISC. The size of all instructions is 32 bits. The 
addressing range of bit instructions is 16Mbits, and the 
addressing range of word instructions is 16Mbytes. For 
future definition of instructions, an instruction's operation 
code is divided into group code and instruction code. 

A condition field is prepared to enable or disable the 
conditional execution of word instructions. Every word 
instruction has the condition field specifying the mode of 
execution, which is either unconditional or conditional. If 
the mode is conditional, the instruction is executed 
according to the value of the bit accumulator, which 
accumulates the result of the bit instructions. When a 
conditional word instruction is executed, the bit accumu- 
lator is tested before the instruction changes the context of 
the processor, such as the contents of the register file, an 
activation of memory access, and the value of the program 
counter. If the tested value is not one, the instruction 
cannot take effect on the context of the processor. 

I n s t r u c t i o n  p i p e l i n e  

In the design of the PLCRISC pipeline, the key concern is to 
speed up the bit instructions that are the most frequently 
used PLC instructions. All bit instructions require at least 
one memory operand access, and thus one execution cycle 
of a bit instruction consists of an instruction fetch cycle, a 
decoding cycle, an operand fetch cycle, a bit data compu- 
tation cycle, and a result updating cycle. Since an internal 
cache is not implemented in the PLCRISC due to the reason 
mentioned in an earlier section, the two memory fetch 
cycles dominate the execution cycle of bit instructions. A 
way to minimize the impact of this dominance is to 
implement the bit data computation and result updating in 
the same pipeline stage with the operand fetch cycle. In the 
PLCRISC, the bit data computation and the result updating 

Figure 4 
PLCRISC 

Instruction formats of  the 
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(a) I c I  GO I ' c I  BP I Absolute Address 
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<b> I,c I Go I ,c I DR i SR 10 i PI Immediate Data 

31 30 27 26 24 23 
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(a) Bit Instruction 
(b) Load Immediate, Reg. Indirect 
(c) Load, Store, Jump, Call 
(d) Move, Arithmetic 

C : Execution Condition bit 
GC : Group Code 
IC : Instruction Code 
BP : Bit Position 

0 

0 

0 

5 4 0 

I Constantq 

SR : Source Register 
DR : Destination Register 
S : Size 
P : Position 
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can be performed quickly with a bit processing unit. And 
since the result of the bit instruction determines the 
conditional execution of the following word instruction, the 
result must be calculated before the word instruction takes 
effect on the context of the PLCRISC. Lastly, although the 
decoding time of the PLCRISC is very short, the decoding 
cycle is performed separately from the instruction fetch 
cycle in order that the exceptions or interrupts can be 
processed in this cycle. Therefore, a three-stage pipeline is 
suitable for efficient execution of bit instructions in the 
PLCRISC. 

Because some word instructions need more complex and 
time-consuming operations, more pipeline stages are 
required. Generally word instructions require an instruction 
fetch cycle, a decoding cycle, an operand fetch cycle, an 
arithmetic or logic computation cycle, and a result write- 
back cycle. While more pipeline stages may increase the 
execution speed of word instructions, the pipeline control 
logic and the internal forwarding control logic nonetheless 
become complex. Furthermore, additional pipeline stages 
do not always increase the execution speed of bit 
instructions because bit instructions need only three 
pipeline stages. Thus, it is necessary to reduce the pipeline 
stages of word instructions. 

In the PLCRISC, a word instruction that needs both an 
operand fetch cycle and an arithemtic computation cycle 
are broken into two separate instructions. Because some 
instructions need a lengthy arithmetic computation, the 
arithmetic computation cycle and the result write-back 
cycle are performed in independent pipeline stages. 

As a result, a four-stage pipeline architecture for word 
instructions is adopted in the PLCRISC. As shown in Figure 
5, four instructions are executed simultaneously in each 
pipeline stage. To balance the load of each pipeline stage, 
all of the instructions are analysed with regard to the time 
required by each operation. During the implementation of 
the instruction set, the PLCRISC instructions are redefined 
or modified to maximize the util ization of the pipelining. 

In the instruction fetch stage, an instruction is fetched 
from the instruction bus, and the program counter is incre- 
mented. Because the instruction bus has a width of 32 bits, 
and because the maximum number of possible instructions 
is fixed, all instructions are fetched in one cycle. The 
instruction is decoded in the instruction decoding stage and 
hence produces the control signals for each pipeline stage. 
For a branch operation, branch conditions are checked and 
the branch target address is selected according to the result. 
Exception conditions, such as memory access miss, division 
by zero, and trap instruction, are also checked. At the same 

bit instruction i 

word instruction i+1 

word instruction i+2 

word instruction i+3 

IF : Instruction Fetch 
ID : Instruction Decode 

I IF I ID I M U I  

I 'F I ID IMEIWB I 
I 'F  I 'D  I M E I V ~ I  

I 'F I 'D IMEI  vvBI 
ME : Memory Fetch & Execute 
MU : Memory Fetch & Bit Result Update 
VVB : Write Back 

Figure 5 PLCRISC pipeline 

time, operand source registers are selected and an absolute 
address is latched into the memory address register. 

During the memory fetch and execution stage, a memory 
access occurs for load and store instructions. For bit 
instructions, an operand reading and a logic computation 
are performed. The valid bit result is provided at the end of 
this stage, and it can be used in the decoding stage of the 
next instruction. For word instructions, only an arithmetic 
computation is executed in an execution unit. In the write- 
back stage, the result of a word instruction is stored in the 
register file. 

ARCHITECTURE OF THE PLCRISC 

The key point of the PLCRISC architecture is the design 
philosophy of simplicity and efficiency. It has an 
architecture especially designed for single-cycle execution, 
simple load/store interface to memory, and simple fixed- 
format instructions. The architectural simplicity yields a 
reduction in chip area, and the saved chip area can be 
utilized by other hardware resources, such as multipliers, 
barrel shifters, and binary-BCD converters 11 ~{. 

Basically, the architecture of the PLCRISC is designed to 
satisfy the features for a high performance PLC processor as 
mentioned earlier. For fast execution of bit instructions and 
simple word instructions, a pipelined architecture is adop- 
ted, and every instruction can be executed within one cycle. 
The separated instruction bus and operand data bus increase 
the memory bandwidth to provide parallel operation of the 
instruction and operand fetch. The bit processing unit 
supports fast bit data manipulation, and numerous func- 
tional units are provided for fast execution of word instruc- 
tions. The conditional execution of a word instruction is 
performed in a hardware level to avoid performance degra- 
dation. The PLCRISC has four internal units: an instruction 
register unit (IRU), an execution unit (EU), a program 
counter unit (PCU), and a memory interface unit (MIU). 

I n s t r u c t i o n  r e g i s t e r  u n i t  

The IRU fetches an instruction for execution, which is 
referred by the program counter register in the PCU, and 
decodes it to produce appropriate control signals. Figure 6 
shows the block diagram of the IRU. 

The instruction decoder is made by hardwired logic, 
which results in a smaller number of gates than 
microprogramming. Because the PLCRISC has four pipeline 
stages, the control signals are delayed by one cycle for the 
memory fetch and execution stage and two cycles for the 
write-back stage. The bypass logic takes care of bypassing 
the register file when a source register corresponds to a 
destination register for previous instructions that have not 
yet written back to the register file. The logic provides two 
levels of internal forwarding so as to avoid pipeline 
hazards. 

The delay logic also performs the conditional execution 
of word instructions and provides the efficient interaction 
between bit and word instruction. When a word instruction 
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is in the mode of conditional execution and execution is 
disabled, the delay logic deactivates the control signals for 
the memory fetch and execution stage and the write-back 
stage. This logic decides the conditional execution of word 
instructions very quickly, and provides no difference in 
execution time between conditional execution and 
unconditional execution. Therefore, the user of the PLC can 
estimate the execution time of a program regardless of 
conditional execution. This advantage allows use of the 
PLCRISC in real time application, in which estimation of 
the program execution time is regarded as one of the most 
important factors. 

The IRU is responsible, furthermore, for exception and 
interrupt handling, and the exception control logic contains 
a finite-stage machine for this purpose. The PLCRISC 
provides eight external interrupt lines, so it manages eight 
levels of interrupts. For the simplicity of external logic, the 
interrupts are received in the form of autovectors as in the 
MC68000 family of processors. Several internal exceptions, 
such as instruction access miss, data access miss, and 
invalid op-code, are supported in this unit. The internal 
timer interrupt is used in a periodical program. A trap 
instruction supported by this unit makes it possible to 
debug the PLCRISC program easily. 

E x e c u t i o n  u n i t  

In the EU, several hardware resources essential to all logic 
and arithmetic operations are implemented. It consists of a 
32 bit register file and function units, such as a bit 
processing unit, an arithmetic logic unit (ALU), a multiplier, 
a barrel shifter, a binary-BCD converter, a magnitude 
comparator, and a step divider. 

This unit reads the operands from registers in the 
instruction decoding stage, processes logic and arithmetic 
operations in the memory fetch and execution stage, and 
writes the results into a register in the write-back stage. 
Figure 7 shows a block diagram of the execution unit. Since 
the PLCRISC supports both 16 bit and 32 bit operations for 

all arithmetic logic instructions, swap multiplexer logic is 
implemented between the register file and function units. 

In the PLCRISC for fast execution of bit instructions, a bit 
processing unit is implemented. The bit processing unit 
consists of two accumulators and a bit manipulation logic. 
The accumulators are implemented as stacks called 'logic 
unit stack' (LUS) and 'master control stack' (MCS). The LUS 
is used to keep each bit instruction result, and the MCS is 
used for master control operations of the LD language 
programs. Since the MCS accumulator has a 32 bit shift 
register, the master control operation can be nested 32 
times. The bit manipulation logic carries out bit logic 
operations such as AND, OR, XOR and NOT. The unit also 
receives the result of a word compare instruction and 
provides the execution condition code for the conditional 
executions of word instructions. 

P r o g r a m  c o u n t e r  u n i t  

The PCU is based on a program counter register (PCR) that 
points to the instruction to be executed. The value of the PCR 
is added by four for a normal operation and can be changed 
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MIU contains a memory interface logic and a multiplexer. 
For a bit output instruction, the memory interface logic has 
a buffer that holds the 16 bit data which was read in the 
previous instruction. When an output instruction is execu- 
ted, the multiplexer substitutes the stored data with result- 
ing bit, and the 16 bit value is written into the memory. 

The MIU also implements an internal timer. Because PLC 
applications usually entail periodic operation and, thus, a 
timer instruction, the PLCRISC provides one internal timer 
avoiding the need for an extra timer chip. The internal 
timer in the MIU generates an exception to the IRU for a 
timer interrupt operation. Several instructions are defined to 
control the timer and load a counter value. 

by branch instructions. This unit also works with the IRU's 
exception unit to handle exceptions and interrupts. 

During normal operation, the instruction addresses in the 
instruction decoding stage and the memory fetch and 
execution stage are saved in the PCU's program counter 
chain, which consists of two cascaded 32 bit registers. The 
PCU contains a mapping table for exception service 
routines. When an exception or an interrupt occurs, the 
instruction in the instruction fetch stage is flushed and the 
address of the instruction is saved. Then the PCR loads the 
address of the interrupt vector table and jumps to the start 
address of the interrupt service routine. During the 
execution of the service routine, the PC chain is frozen. 

In the PLCRISC, the exception check and external inter- 
rupt detection are accomplished in the early stage of an 
instruction execution. To support this mechanism, several 
hardware resources are added, such as a zero count check 
logic, a memory boundary check logic, a division by zero 
check logic, and a binary-to-BCD overflow check logic. 
These logics reduce the complexity of exception proces- 
sing, which is one of the most difficult aspects of designing 
RISC processors. The early detection of exception condi- 
tion prevents unnecessary instructions from being fetched. 

In returning from the interrupt service routine, a return 
from the exception instruction enables the program counter 
chain again and successively shifts out the two addresses 
contained in it. The program then can execute the 
instructions that were flushed when the exception or 
interrupt occurred. After these operations, the program 
enables the exceptions and interrupts again. 

Memory interface unit 

In this unit, an interface between the internal data path and the 
external data memory is implemented. To meet the high 
memory bandwidth typical of PLCs (see Table 3), the PLCRISC 
has separate buses for instructions and operands, and thus 
fetching of an operand in each instruction in the MIU is 
performed concurrently with an instruction fetch in the IRU. 

The bit instructions need bitwise data and must access 
the memory bitwisely. But usually in PLCs, the main 
memory is made to have a byte or word boundary structure 
due to the design complexity and cost. Therefore, to over- 
come the incompatibility of the two addressing modes, the 

PERFORMANCE EVALUATION AND VLSI DESIGN 

Usually the performance of a PLC is calculated and 
compared to that of other models with just the execution 
time of bit instructions. This concept is similar to the MIPS 
of general purpose processors. However, such a method is 
somewhat far from a correct performance index. In a 
commercial PLC, word instructions take a longer time than 
do bit instructions, although bit instructions are more 
frequently used. To calculate the performance more 
accurately, the performance must be evaluated by the 
execution time of mixed PLC instructions. In doing so, 
because the PLCRISC has simple word instructions, the 
word instructions of a PLC program must be translated into 
several PLCRISC instructions. Table 5 shows translation 
examples of several representative PLC instructions. 

Based on the execution times of mixed PLC bit and word 
instructions which are translated into PLCRISC instructions, 
the performance of the PLCRISC is obtained by timing 
simulations in a CAD environment as shown in Figure 10. 
The more word instructions in a PLC program that are used, 
the more PLCRISC instructions that are needed. Thus, the 
performance is degraded. This result shows that the 
PLCRISC is much faster than existing PLCs; for example, 
1 kstep/ms for the Mitsubishi A series and 1.67 kstep/ms for 
the Siemens $5-135U 14. In the simulation, the PLCRISC is 
assumed to be running at a 16 MHz clock. 

Table 5 Examples of PLC instruction translation 

PLC Converted PLCRISC instructions 
instructions 

str rO01 str rO01 ; start rung 

out r001 iniout r001 ; init out (read data) 
out r001 ; out (modified write) 

Ioad.I rO,w2 ; load a word from 
memory 

Ioad.I rl ,w3 ; load a word from 
memory 

add wl,w2,w3 add.w rl,r2 ; add word data 
(w l=w2+w3)  store.I wO,psw ; store PSW to memory 

store.I wl ,r2 ; store the result to 
memory 
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The unit of the performance is ksteps/ms, in which 'step' 
means the number of executed instructions. With the 
performance index, the user can determine how many I/O 
points the PLC processor can handle within a finite scan time. 

The PLCRISC is developed in ASIC form and 
implemented by VHDL (VHSIC Hardware Description 
Language). Because VHDL is a design tool that uses a high 
level language, the design time can be reduced and the 
design is maintained efficiently. Recently, VHDL, which 
was designed mainly as a simulation language, has been 
used effectively as a synthesis language I~ 

In the design of the PLCRISC, after the functionalities of 
the processor are simulated in the VHDL environment, the 
circuits are made by VHDL synthesis. In the early stages of 
the implementation, several blocks are divided according 
to their functions. Among them the internal control part is 
made by VHDL synthesis and the data path parts, including 
the ALU, the multiplier and the barrel shifter, are 
implemented by a data path compiler of the ASIC vendor. 

To prove the validation of the operations of the PLCRISC, 
a software simulator, named by PLCSIM, is implemented in 
parallel with the processor design. The PLCSIM has a 
graphical user interface based on an X-window system. 
After the PLCSIM reads and executes the PLCRISC 
programs, it produces the expected state of the processor at 
the end of every instruction cycle. The results of the 
simulator are compared with the simulation results of the 
CAD tool to verify the functionality of the PLCRISC. The 
simulator has an ability to randomize the data value 
referred by the instructions and also the ability to debug the 
entire internal states of the processor. Thus, it can be used 
as a software development tool for PLC programming. 

C O N C L U S I O N  

In this paper, a special purpose RISC microprocessor for 
programmable logic controllers is proposed. Through the 
investigation of the features required for high performance 
PLC processors and the analysis of existing PLC programs, 
an instruction set is selected and the basic architecture is 

suggested. Specifically, PLCRISC instructions significantly 
reduce the overhead that arises when general purpose 
microprocessors, which are designed for word instructions, 
are used for PLCs, which predominantly operate with bit 
instructions. The PLCRISC employs a four-stage pipeline, 
separated external buses, and special hardware support for 
the interaction between bit and word instructions, in order 
to enhance the performance. Thus, it can execute PLC 
instructions very fast and efficiently. The PLCRISC satisfies 
the increasing needs of functionality and speed in industrial 
sequential control fields and can be adopted in a large, 
high-performance and high-speed PLCs. 

The proposed PLCRISC processor has been evaluated 
through simulation using VHDL. The simulation result shows 
that this processor runs much faster than the microprocessors 
used in commercial PLCs. The PLCRISC is under fabrication 
in a 0.8 l~m. CMOS technology, and is shortly scheduled to be 
implemented in a real commercial product. 
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