
Implementation of a RISC
microprocessor for

programmable logic controllers
Gab Seon Rho, Kyeong-hoon Koo*, Naehyuck Chang*, Jaehyun Park*,

Yeong-gi Kim t and Wook Hyun Kwon*

A special purpose RISC (reduced instruction set computer)
microprocessor for programmable logic controllers (PLC), named
PLCRISC, is proposed. To develop an optimal PLCRISC, we
analysed existing PLC programs currently used in factories, with
special attention to the instruction execution characteristics and
features required for a high performance PLC processor. Based on
this analysis, an optimal RISC-style instruction set and an
architecture suitable for the required features are suggested. In
particular, the instruction format, the instruction pipeline, and the
detailed internal architecture are the significant characteristics of
the proposed PLCRISC. The performance enhancement achieved
with a PLCRISC is seen from a straightforward evaluation. ASIC
implementation with VHDL is also discussed. The PLCRISC is
under fabrication in a 0.8/~m CMOS technology.

Keywords: programmable logic controllers, RISC architecture,
special purpose microprocessor

The programmable logic controller (PLC) was originally
developed as a sequential control device to replace electro-
mechanical relays in factories, and it is now being used for
numerous applications, including in factory automation in
chemical processing, manufacturing, and mining 1. With
the progress of micro-computing technology, the PLC is
improving at a very fast pace. Factories are also expanding
and becoming more complex at a very fast pace. Ideally,
the PLC will improve in step with factory expansion. It must
provide more computing power and functions.

In many industries, a commercial general purpose
microprocessor is used as the central processing unit of the
PLCs. Indeed, many powerful microprocessors provide

*Department of Control and Instrumentation Engineering, Seoul National
University, Shinlim-dong San56-1, Kwanak-gu, Seoul, 151-742, Korea
Email: rho@cisl.snu.ac.kr
tSamsung Aerospace Industries, Ltd, Suwon, PO Box 111, Kyungki-do,
441-600, Korea
Paper r~ceived: 29 August 1994. Revised: 11 Au~;ust 1995

high performance in general purpose applications.
However, such processors cannot guarantee the high
performance required for PLCs for the following three
reasons. First, PLCs operate best with bit type data
structures, while general purpose microprocessors are
designed to handle byte or word type data 2. Therefore, if
the PLC employs a general purpose microprocessor, a bit
type operation must be made of several instructions. This
results in significant performance degradation.

Second, for control purposes, the PLC receives large
volumes of input data that change very frequently accord-
ing to the states of a controlled system. Since the PLC must
use these data as operands of its instructions instead of the
internal data that are stored in the registers, the PLC
processor must fetch the data from the memory for every
instruction. Thus, the memory traffic in PLCs becomes very
heavy. But general microprocessors do not adequately
meet this high memory bandwidth, because they have an
architecture suitable for manipulating data in internal
registers. Therefore, an improvement in memory bandwidth
is required to enhance the overall performance of PLCs.

Third, for high performance PLCs, an efficient interactive
mechanism between bit type operation and word type
operation must be available, which will be explained in
detail in the following section. General purpose
microprocessors do not have this interactive mechanism.

An approach to overcome the above problems is to use a
special purpose processor. In recent years, several new
architectures of the PLC processor have been proposed.
One of them is to use a dedicated hardware logic which is
based on the array processor architecture 2. This processor
can execute bit instructions very fast due to optimization of
bit operations. However, it has difficulty in executing word
instructions and also has an inflexible configuration.
Another type of architecture is to use a memory-based
implementation 3. This processor can perform fast parallel
computation, and its structure is very simple. However, it

0141-9331/95/$9.50 ~C~ 1995 Elsevier Science B.V. All rights reserved
Microprocessors and Microsystems Volume 19 Number 10 December 1995 599

Implementation of a RISC microprocessor: G S Rho et al.

requires large memory fields because its data structure is
very sparse and many bits of the data are used ineffectively.

A more efficient method to make a high performance
PLC is to develop a special purpose processor in order to
meet application-specific requirements obtained through
the analysis of existing PLC programs. This method is
suitable especially for a special purpose processor that
adopts a RISC architecture 4'~. Recently a RISC-based PLC
processor was proposed by Toshiba ~', but Toshiba did not
address the analysis of the PLC program characteristics.
Moreover, Toshiba could not describe an instruction set
suitable for high performance PLCs.

In this paper, a special purpose RISC microprocessor for
PLCs, named PLCRISC, is proposed. The PLCRISC is
developed to have a limited and simple instruction set,
and it utilizes hardware resources optimally to speed up
the most frequently used instructions through highly
efficient VLSI design technology 4. In the PLCRISC, a RISC-
style instruction set is selected optimally through the
analysis of many PLC programs currently used in factories.
Thus, the PLCRISC supports more general instructions than
can the above processors, and consequently it can provide
a more flexible programming environment. Several
function units that balance bit operations and word
operations are implemented in order to enhance the
overall processing speed.

In the next section, we characterize existing PLC
programs in use for various factory automation. From this
characterization, we can suggest the features required for
high performance in PLC processors. In the following
sections, the instruction set, the instruction format, the
instruction pipeline, and the internal architecture of the
PLCRISC are described. Lastly, performance evaluation and
development in ASIC are discussed.

C H A R A C T E R I S T I C S OF PLC P R O C E S S O R S

In this section, the execution characteristics of PLC
programs are described, and features required for a high
performance PLC processor are suggested.

PLC p r o g r a m m i n g

Many programming languages are available for PLCs, such
as the instruction list (IL), the structured text (ST), the
function block diagram (FBD), and the ladder diagram
(LD) 7. Among them, the LD language is the most popular,
and it has a graphical form that is suitable for the
representation of a sequential control system. The LD
language is depicted by a diagram of matrix type symbols
that represent relays, switches, solenoids and lamps, etc.
This graphical language, however, is not easily executed
directly by a PLC processor. Generally, the programs
written in the LD language are converted to mnemonic PLC
instructions for execution. Figure I shows an LD language
program and its corresponding mnemonic PLC instructions.

Although the mnemonic instructions are supported
somewhat differently by each PLC manufacturer, the

R01 R02 R04

- t I C) - -
R0g

R05

--t I -[ADO w00,vv01,w02 F-
(a) a ladder diagram program

Figure 1

STR R01
AND R02
OR R03
OUT R04
STR R05
ADD W01 ,W02,W03

(b) converted PC instructions

An example of a ladder diagram program

typical PLC will usually support two primary groups of
instructions: bit instructions and word instructions. In the
bit instruction group, bitwise logic instructions, such as
START, AND and STORE, are included. These instructions
have a one-to-one correspondence to the relay logics that
were used as sequential control devices in the past. Word
instructions consist of compare, arithmetic, move, and flow
control instructions g. The word instructions can be used in
functions such as PID control, user interface, and
communication.

The word instructions are very similar to the instructions
of general purpose microprocessors. However, in PLCs, the
word instructions can be tightly coupled with bit
instructions, and thus they have different execution patterns
compared to general purpose microprocessor instructions.

Frequency of PLC instruct ions

Because PLCs are used in a variety of applications, such as
chemical processing, manufacturing, mining, pulp and
metal processing, each unique PLC requires control
programs suitable for its specific application. These control
programs have different execution patterns. Furthermore,
because the users of PLCs have different programming
styles, the frequency of use of PLC instructions varies
greatly among users.

To analyse the behaviour of PLC programs, we
investigated many PLC programs currently used in
factories. We simulated their execution on a computer and
stored the results. In particular, we focused on several
measurements: frequency of instructions, frequency of
addressing mode, and execution sequencing ~. All of the
measurements are dynamic measurements that are
obtained by counting the actual number of executions for
each instruction. Such measurements can provide more
useful information than static measurements, which
merely count the source codes of the programs. Among
these measurements, the frequency of PLC instructions, a
key parameter, can be presented as a percentage of total
instructions (see Table 1).

For efficient execution of the instructions used frequently
in PLC programs, a special processor is needed. The
frequently used instructions in PLC programs, such as bit
instructions, move instructions and compare instructions,
must be included in the machine instruction set of the
special purpose processor to obtain a high performance
PLC. Table 1 provides useful information when designing
the machine instructions of a PLC processor.

600 Microprocessors and Microsystems Volume 19 Number 10 December 1995

Table 1 Frequency of PLC instructions

Instruction type Percentage

Bit instruction 69.0
Timer, counter 1.4
Move 12.0
Compare 9.3
Arithmetic 6.1
Flow control 2.2

Bit ins t ruct ions of PLCs

Analysis of PLC instructions shown in Table 1 shows that
two-thirds are bit instructions. This occurs because the PLCs
have been used as sequential controllers replacing the
electro-mechanical relays. Because the states of relays can
be represented by only two states, ON and OFF, the bit
instructions use bit type data structures as their operands and
perform bitwise logic operations. However, general purpose
microprocessors have byte or word data structures, and thus
they are fundamentally designed for types of instructions
other than the bit instructions of the PLC programs 2.

Generally in commercial PLCs, the bit instructions of
PLC programs are emulated by several instructions of the
general purpose processor. This emulation produces a large
software overhead, namely, much more software
programming is provided than is required. Because the bit
instruction is most frequently used in PLC programs, the
overhead degrades the performance of PLCs greatly.
Therefore an increase in the execution speed of bit
instructions is one of the most important factors in
improving the overall performance of a PLC processor.

Execut ion s e q u e n c e

For complete execution of a PLC program, the PLC samples
input signals from the controlled system, process the value
of the signals according to the preprogrammed logic, and
update the values of output signals. This procedure is
called 'one scan'. The PLC repeats this scan cycle
continuously.

Because the PLC replaced relay sequential logic where
the relays operated sequentially, the PLC program tends to
be executed straight from top to bottom without a loop or
branch during one scan cycle. At least this is true for a
program that consists of only bit instructions. Table 2 shows
the frequency of executions for each line of source code of
the programs analysed. Almost all instructions are executed
only once during one scan cycle. This is because few flow
control instructions are used in PLC programs as shown in
Table 1.

In general purpose microprocessors, most programs do
not access all instruction codes uniformly. This rule is
called the principle of locality t°. Based on this hypothesis,
the memory hierarchy using a cache memory can produce
better performance. But in the PLC, there is no locality, as
shown in Table 2. Therefore the implementation of a cache
memory in a PLC processor is less efficient.

Implementation of a RISC microprocessor: G S Rho et al.

Table 2 Executir)n number of each line

Number of executions during one
scan cycle

Percentage

Only once 98.1
Twice 1.8
More than twice 0.1

M e m o r y b a n d w i d t h

In factories, the PLC is connected with sensors and
actuators for receiving input data from the sensors and
sending driving commands to the actuators. The PLC
processor receives the input signals and stores them into
the main memory. After the logic programs are processed
with the given input data in the main memory, the output
values are updated and sent to actuators and ultimately
reflected in changes to the external system. During the
execution of the PLC program, most of the PLC instructions
require memory resident operands. This is especially true
for the bit instructions that are frequently used in PLC
programs and fetch their operands for every execution.
Thus in PLCs, many memory references are needed. Table
3 shows the occurrence of the types of operands, which
was obtained by the examination of the dynamic behaviour
of PLC programs.

The memory resident operand needs an operand fetch
cycle (OFC) and results in a conflict with an instruction
fetch cycle (IFC). Because most of the processors in
commercial PLCs have a single external bus, the instruction
and the operand must be fetched sequentially. Figure 2
compares the sequential execution timing of a single bus
pipeline architecture machine with the parallel execution
timing of a separated bus pipeline architecture machine. As
shown in Figure 2, if a processor has two separate buses for
instruction and operand, the two cycles can occur in
parallel. To meet the high memory bandwidth shown in
Table 3, a processor that has two separated buses must be
employed in the PLC.

Table 3 Frequency of operand sources

Operand type Percentage

Memory reference 75.0
Immediate scalar 20.0
No operand 5.0

bit instructioni I IF I ID I Mu I
word instructioni+l I IF I ID I ME I WB I

word instruction i+2 [IF [ID I ME I ~ I

word instruction i+3 I IF I ID I ME I wB I

IF : Instruction Fetch ME : Memory fetch & Execute
ID : Instruction Decode MU : memory fetch & bit result update

VVB : Write Back
Figure 2 Sequential and parallel execution

Microprocessors and Microsystems Volume 19 Number 10 December 1995 601

Implementation of a RISC microprocessor: G S Rho et al.

t__~ [} IF (R001 = 1)
ADD W007 = 3 + W008

ADD W007 = 3 + W008 ELSE

No Operation

Figure 3 Execution of a word instruction

Interaction between bit and word instructions

In PLCs, the word instructions, such as addition,
multiplication and shift, are related closely with the bit
instructions. For example, the branch instruction checks
not only the branch condition but also the value of a bit
accumulator, which stores the resulting data of bit
instructions. As another example, both memory updating
and data writing to the registers are decided by the value of
the bit accumulator. As explained above, the word
instructions of PLCs are executed conditionally according
to the result of a bit instruction. Figure 3 shows an example
of a word instruction in the LD language and its
corresponding execution procedure.

Generally in commercial PLCs implemented with typical
microprocessors, the conditional execution of a word
instruction is performed in software using test and jump
instructions. Since it takes too much time, the conditional
execution of a word instruction produces a software
overhead in typical PLCs.

For the efficient interaction between bit and word
instructions, a bit processing unit must be included in the
PLC processor, and special hardware logic for the fast
decision making on the conditional execution of word
instructions must be implemented. Furthermore, in a PLC, a
bit instruction often needs an operand from the word
instructions, for example, after a compare instruction is
executed with word data, the following bit instruction takes
the result as its operand. Thus the PLC processor must
provide a method where the results of some word
instructions can be used as operands of bit instructions.

INSTRUCTIONS OF THE PLCRISC

Using the analysis of PLC execution characteristics
described above, we can design an optimal RISC-style
instruction set, particularly ensuring that it efficiently
accommodates the predominance of bit instructions in
PLCs. Most currently used P L C s derive from
microprocessors that have complex control logic and word
instructions. The improvement that a PLCRISC offers is that
it has a core of simple and limited instructions in a fixed
format. This core instruction set can manage almost all of
the required execution of PLC instructions.

During the design and implementation stage of the
PLCRISC instruction set, the decision between what is to be
implemented in hardware and what is to be done in
software has been made. Some PLC instructions require
many execution stages, different instruction formats, and
various addressing modes. For example, one particular
complicated multiplication instruction requires three
memory references, two for operand fetches and one for a

result writing. A processor that has such PLC instructions as
its inherent instruction is very difficult to design, and its
implementation costs are very high. And because such
processors have very complex control logic, the bit
instructions that carry out simple operations cannot be
executed quickly and hardware resources cannot be
utilized optimally. Therefore, for fast execution of PLC
instructions, a simple and limited instruction set that has a
fixed format is more useful.

Instruction set

The PLC instructions that are used frequently in the PLC
programs, as shown in Table 1, were selected to be
implemented in the PLCRISC. Since the bit instructions of
PLC programs have simple semantics, all bit instructions
are implemented as the instructions of the PLCRISC. Still,
some complicated PLC word instructions must be executed
in the PLCRISC, which has a RISC architecture. This is a
difficult obstacle, but it can be overcome by breaking down
the necessary PLC word instructions into several simpler
instructions that the PLCRISC can manage efficiently.

In the PLCRISC, more than 80 instructions, such as big
logic instructions, memory access instructions, data move
instructions, arithmetic instructions, shift and rotate
instructions, compare instructions, and flow control
instructions, are implemented. Several representative
instructions of the PLCRISC are shown in Table 4.

Table 4 Part of the PLCRISC instruction set

Opcode Operands Description

STR $Bit_addr Start rung
AND $Bit_addr And bit
OR $Bit_addr Or bit
INIOUT $Bit addr Initializer out
OUT $Bit_addr Out bit
MCS Master control set
MCR Master control reset
LOAD.I(h) Reg,#const Load immediate
STORE.I(h) $W addr, Reg Store absolute
MOVE Src,Des Move data between regs.
ADD Srcl ,Src2,Des Add
SUB Srcl ,Src2,Des Subtract
MUL Srcl ,Src2,Des Multiply
DIV Srcl ,Src2,Des Divide
RLC Srcl ,Src2,Des Rotate left with carry
SHL Srcl ,Src2,Des Logical shift left
BSET Bit_pos, Des Bit set
STRCEQ Srcl ,Src2 Compare equal (TOS)
BIN Src,Des Convert BCD to binary
BCD Src,Des Convert binary to BCD
LOOP Reg,#LABEL Loop if reg is non zero
JMP Reg Jump indirectly
CALL #LABEL Subroutine call indirect
RETI Return from interrupt
TRAP Software trap interrupt

602 Microprocessors and Microsystems Volume 19 Number 10 December 1995

While almost all bit instructions of a PLC program have
one-to-one correspondence to the bit instructions of the
PLCRISC, bit output instructions and pulse instructions are
substituted by two or three bit instructions, as they access
memory twice or three times respectively. As in RISC
processors used for other applications, only load and store
instructions can access memory. Usually all bit instructions
require absolute addressing operands. And the word
instruction that needs a complex addressing mode is
broken into several instructions that have a simple addres-
sing mode. Thus absolute, immediate, and register indirect
addressing modes are implemented in the PLCRISC.

Move instructions are supported to transfer data between
internal registers. For word arithmetic operations, 12
arithmetic and logic instructions are defined, including
addition, subtraction, multiplication, shifting, rotating, and
binary-BCD conversion. In the PLCRISC, the result of a
compare instruction is stored in the bit accumulator, and
thus any word instruction can be conditional if it follows
the compare instruction. Seven flow control instructions are
included. The (:all instruction saves the return address at
the special register. The branch instruction is not expected
to be taken, and the branch condition is checked at an
early stage to reduce the branch penalty.

In the PLCRISC, the floating point operations are
performed using an external coprocessor. The choice of
adding an external coprocessor is optimal because few
floating point instructions are used in PLC applications.
Possibly, a special application or intelligent control
algorithm sometimes requires floating point operations.
Thus, judging from the perspective of performance
improvement versus hardware requirements, an
implementation of a floating point unit in the PLCRISC is
less efficient. Though the PLCRISC has no coprocessor
instruction, it supports the interface with the floating point
coprocessor in the form of a memory instruction. The
information that is needed for a floating point operation is
encoded in the memory access instruction and transferred
to the external floating point coprocessor.

In a RISC processor, the branch mechanism has one of
the largest impacts on the performance of the machine. The
branch instruction breaks the pipelined streams, so
minimization of their effects is important. In the PLCRISC,

Implementation of a RISC microprocessor: G S Rho et al.

the branches are taken after checking both the result of a
bit instruction and the corresponding branch condition, as
mentioned earlier. To do so, compare instructions are
separated from branch instructions, and the condition
check is performed in the early pipeline stage of a branch
operation.

Figure 4 represents the instruction formats of the
PLCRISC. The size of all instructions is 32 bits. The
addressing range of bit instructions is 16Mbits, and the
addressing range of word instructions is 16Mbytes. For
future definition of instructions, an instruction's operation
code is divided into group code and instruction code.

A condition field is prepared to enable or disable the
conditional execution of word instructions. Every word
instruction has the condition field specifying the mode of
execution, which is either unconditional or conditional. If
the mode is conditional, the instruction is executed
according to the value of the bit accumulator, which
accumulates the result of the bit instructions. When a
conditional word instruction is executed, the bit accumu-
lator is tested before the instruction changes the context of
the processor, such as the contents of the register file, an
activation of memory access, and the value of the program
counter. If the tested value is not one, the instruction
cannot take effect on the context of the processor.

I n s t r u c t i o n p i p e l i n e

In the design of the PLCRISC pipeline, the key concern is to
speed up the bit instructions that are the most frequently
used PLC instructions. All bit instructions require at least
one memory operand access, and thus one execution cycle
of a bit instruction consists of an instruction fetch cycle, a
decoding cycle, an operand fetch cycle, a bit data compu-
tation cycle, and a result updating cycle. Since an internal
cache is not implemented in the PLCRISC due to the reason
mentioned in an earlier section, the two memory fetch
cycles dominate the execution cycle of bit instructions. A
way to minimize the impact of this dominance is to
implement the bit data computation and result updating in
the same pipeline stage with the operand fetch cycle. In the
PLCRISC, the bit data computation and the result updating

Figure 4
PLCRISC

Instruction formats of the

31 30 27 26 24 23 20 19

(a) I c I GO I ' c I BP I Absolute Address

31 30 27 26 24 23 21 20 18 17 16 15

 I,c I Go I ,c I DR i SR 10 i PI Immediate Data

31 30 27 26 24 23

Ic> I,cI Go I , c I Absolute Address

31 30 27 26 24 23 21 20 18 17 16 10 9

I,° I Gc I SR1 I DR I iS I 0 J ,C

(a) Bit Instruction
(b) Load Immediate, Reg. Indirect
(c) Load, Store, Jump, Call
(d) Move, Arithmetic

C : Execution Condition bit
GC : Group Code
IC : Instruction Code
BP : Bit Position

0

0

0

5 4 0

I Constantq

SR : Source Register
DR : Destination Register
S : Size
P : Position

Microprocessors and Microsystems Volume 19 Number 10 December 1995 603

Implementation of a RISC microprocessor: G S Rho et al.

can be performed quickly with a bit processing unit. And
since the result of the bit instruction determines the
conditional execution of the following word instruction, the
result must be calculated before the word instruction takes
effect on the context of the PLCRISC. Lastly, although the
decoding time of the PLCRISC is very short, the decoding
cycle is performed separately from the instruction fetch
cycle in order that the exceptions or interrupts can be
processed in this cycle. Therefore, a three-stage pipeline is
suitable for efficient execution of bit instructions in the
PLCRISC.

Because some word instructions need more complex and
time-consuming operations, more pipeline stages are
required. Generally word instructions require an instruction
fetch cycle, a decoding cycle, an operand fetch cycle, an
arithmetic or logic computation cycle, and a result write-
back cycle. While more pipeline stages may increase the
execution speed of word instructions, the pipeline control
logic and the internal forwarding control logic nonetheless
become complex. Furthermore, additional pipeline stages
do not always increase the execution speed of bit
instructions because bit instructions need only three
pipeline stages. Thus, it is necessary to reduce the pipeline
stages of word instructions.

In the PLCRISC, a word instruction that needs both an
operand fetch cycle and an arithemtic computation cycle
are broken into two separate instructions. Because some
instructions need a lengthy arithmetic computation, the
arithmetic computation cycle and the result write-back
cycle are performed in independent pipeline stages.

As a result, a four-stage pipeline architecture for word
instructions is adopted in the PLCRISC. As shown in Figure
5, four instructions are executed simultaneously in each
pipeline stage. To balance the load of each pipeline stage,
all of the instructions are analysed with regard to the time
required by each operation. During the implementation of
the instruction set, the PLCRISC instructions are redefined
or modified to maximize the util ization of the pipelining.

In the instruction fetch stage, an instruction is fetched
from the instruction bus, and the program counter is incre-
mented. Because the instruction bus has a width of 32 bits,
and because the maximum number of possible instructions
is fixed, all instructions are fetched in one cycle. The
instruction is decoded in the instruction decoding stage and
hence produces the control signals for each pipeline stage.
For a branch operation, branch conditions are checked and
the branch target address is selected according to the result.
Exception conditions, such as memory access miss, division
by zero, and trap instruction, are also checked. At the same

bit instruction i

word instruction i+1

word instruction i+2

word instruction i+3

IF : Instruction Fetch
ID : Instruction Decode

I IF I ID I M U I

I 'F I ID IMEIWB I
I 'F I 'D I M E I V ~ I

I 'F I 'D IMEI vvBI
ME : Memory Fetch & Execute
MU : Memory Fetch & Bit Result Update
VVB : Write Back

Figure 5 PLCRISC pipeline

time, operand source registers are selected and an absolute
address is latched into the memory address register.

During the memory fetch and execution stage, a memory
access occurs for load and store instructions. For bit
instructions, an operand reading and a logic computation
are performed. The valid bit result is provided at the end of
this stage, and it can be used in the decoding stage of the
next instruction. For word instructions, only an arithmetic
computation is executed in an execution unit. In the write-
back stage, the result of a word instruction is stored in the
register file.

ARCHITECTURE OF THE PLCRISC

The key point of the PLCRISC architecture is the design
philosophy of simplicity and efficiency. It has an
architecture especially designed for single-cycle execution,
simple load/store interface to memory, and simple fixed-
format instructions. The architectural simplicity yields a
reduction in chip area, and the saved chip area can be
utilized by other hardware resources, such as multipliers,
barrel shifters, and binary-BCD converters 11 ~{.

Basically, the architecture of the PLCRISC is designed to
satisfy the features for a high performance PLC processor as
mentioned earlier. For fast execution of bit instructions and
simple word instructions, a pipelined architecture is adop-
ted, and every instruction can be executed within one cycle.
The separated instruction bus and operand data bus increase
the memory bandwidth to provide parallel operation of the
instruction and operand fetch. The bit processing unit
supports fast bit data manipulation, and numerous func-
tional units are provided for fast execution of word instruc-
tions. The conditional execution of a word instruction is
performed in a hardware level to avoid performance degra-
dation. The PLCRISC has four internal units: an instruction
register unit (IRU), an execution unit (EU), a program
counter unit (PCU), and a memory interface unit (MIU).

I n s t r u c t i o n r e g i s t e r u n i t

The IRU fetches an instruction for execution, which is
referred by the program counter register in the PCU, and
decodes it to produce appropriate control signals. Figure 6
shows the block diagram of the IRU.

The instruction decoder is made by hardwired logic,
which results in a smaller number of gates than
microprogramming. Because the PLCRISC has four pipeline
stages, the control signals are delayed by one cycle for the
memory fetch and execution stage and two cycles for the
write-back stage. The bypass logic takes care of bypassing
the register file when a source register corresponds to a
destination register for previous instructions that have not
yet written back to the register file. The logic provides two
levels of internal forwarding so as to avoid pipeline
hazards.

The delay logic also performs the conditional execution
of word instructions and provides the efficient interaction
between bit and word instruction. When a word instruction

604 Microprocessors and Microsystems Volume 19 Number 10 December 1995

Implementation of a RISC microprocessor: G S Rho et al.

I

0 P-cocle~ InstructionL
DLc°der ~

t INT(0:7) ~--,-4 ~ .,
Timer ~ I=xcepuon /

Pc-miss .---[Control I--
inv=-op "--'4 Logic /
Di ~ A |

clock ,L
Execution Condition Bit
From Bit Accumulator•

Figure 6

BYPASS

internal
forwarding

I control
ID Stacle
contror I i

I -

- I ME.stage

contro I . " [WBstage

-") - Deactivate Signal

ID • Instruction Decode
ME • ,M?..mo.ry Fetch & Execution
VVB vvrl te-oacK

Block d iagram of the inst ru(t ion register unit

is in the mode of conditional execution and execution is
disabled, the delay logic deactivates the control signals for
the memory fetch and execution stage and the write-back
stage. This logic decides the conditional execution of word
instructions very quickly, and provides no difference in
execution time between conditional execution and
unconditional execution. Therefore, the user of the PLC can
estimate the execution time of a program regardless of
conditional execution. This advantage allows use of the
PLCRISC in real time application, in which estimation of
the program execution time is regarded as one of the most
important factors.

The IRU is responsible, furthermore, for exception and
interrupt handling, and the exception control logic contains
a finite-stage machine for this purpose. The PLCRISC
provides eight external interrupt lines, so it manages eight
levels of interrupts. For the simplicity of external logic, the
interrupts are received in the form of autovectors as in the
MC68000 family of processors. Several internal exceptions,
such as instruction access miss, data access miss, and
invalid op-code, are supported in this unit. The internal
timer interrupt is used in a periodical program. A trap
instruction supported by this unit makes it possible to
debug the PLCRISC program easily.

E x e c u t i o n u n i t

In the EU, several hardware resources essential to all logic
and arithmetic operations are implemented. It consists of a
32 bit register file and function units, such as a bit
processing unit, an arithmetic logic unit (ALU), a multiplier,
a barrel shifter, a binary-BCD converter, a magnitude
comparator, and a step divider.

This unit reads the operands from registers in the
instruction decoding stage, processes logic and arithmetic
operations in the memory fetch and execution stage, and
writes the results into a register in the write-back stage.
Figure 7 shows a block diagram of the execution unit. Since
the PLCRISC supports both 16 bit and 32 bit operations for

all arithmetic logic instructions, swap multiplexer logic is
implemented between the register file and function units.

In the PLCRISC for fast execution of bit instructions, a bit
processing unit is implemented. The bit processing unit
consists of two accumulators and a bit manipulation logic.
The accumulators are implemented as stacks called 'logic
unit stack' (LUS) and 'master control stack' (MCS). The LUS
is used to keep each bit instruction result, and the MCS is
used for master control operations of the LD language
programs. Since the MCS accumulator has a 32 bit shift
register, the master control operation can be nested 32
times. The bit manipulation logic carries out bit logic
operations such as AND, OR, XOR and NOT. The unit also
receives the result of a word compare instruction and
provides the execution condition code for the conditional
executions of word instructions.

P r o g r a m c o u n t e r u n i t

The PCU is based on a program counter register (PCR) that
points to the instruction to be executed. The value of the PCR
is added by four for a normal operation and can be changed

f
22 I

From IRU Register File J

• • 0_ I /

clock

. t J II J
I 32 , I T -
Multiplier] ALU

Barrel Shifter Divider |
BCD-BIN Mag-C°mparat°rl 32

clock .

Figure 7

: TO MIU

32 I
I " I

Bit ALU

I
From MIU

P R Pipeline Register

Block diagram of the execution unit

I
PC 2

PC 3
PC_shift , J

(r
24

i I
clock " ~

i
From IRU

I From EU

I Pc, I

l PCR I
i

Code Address Bus

Figure 8 Block diagram ol the program counter unit

Microprocessors and Microsystems Volume 19 Number 10 December 1995 605

Implementation of a RISC microprocessor: G S Rho et al. T°E I
From E

From E t ~ , ~

I From I R U = _ ~

clock _ I

Data Bus

16

. ToEU
- Tim_lnt
Address Bus
24

Figure 9 Block diagram of the memory interface unit

MIU contains a memory interface logic and a multiplexer.
For a bit output instruction, the memory interface logic has
a buffer that holds the 16 bit data which was read in the
previous instruction. When an output instruction is execu-
ted, the multiplexer substitutes the stored data with result-
ing bit, and the 16 bit value is written into the memory.

The MIU also implements an internal timer. Because PLC
applications usually entail periodic operation and, thus, a
timer instruction, the PLCRISC provides one internal timer
avoiding the need for an extra timer chip. The internal
timer in the MIU generates an exception to the IRU for a
timer interrupt operation. Several instructions are defined to
control the timer and load a counter value.

by branch instructions. This unit also works with the IRU's
exception unit to handle exceptions and interrupts.

During normal operation, the instruction addresses in the
instruction decoding stage and the memory fetch and
execution stage are saved in the PCU's program counter
chain, which consists of two cascaded 32 bit registers. The
PCU contains a mapping table for exception service
routines. When an exception or an interrupt occurs, the
instruction in the instruction fetch stage is flushed and the
address of the instruction is saved. Then the PCR loads the
address of the interrupt vector table and jumps to the start
address of the interrupt service routine. During the
execution of the service routine, the PC chain is frozen.

In the PLCRISC, the exception check and external inter-
rupt detection are accomplished in the early stage of an
instruction execution. To support this mechanism, several
hardware resources are added, such as a zero count check
logic, a memory boundary check logic, a division by zero
check logic, and a binary-to-BCD overflow check logic.
These logics reduce the complexity of exception proces-
sing, which is one of the most difficult aspects of designing
RISC processors. The early detection of exception condi-
tion prevents unnecessary instructions from being fetched.

In returning from the interrupt service routine, a return
from the exception instruction enables the program counter
chain again and successively shifts out the two addresses
contained in it. The program then can execute the
instructions that were flushed when the exception or
interrupt occurred. After these operations, the program
enables the exceptions and interrupts again.

Memory interface unit

In this unit, an interface between the internal data path and the
external data memory is implemented. To meet the high
memory bandwidth typical of PLCs (see Table 3), the PLCRISC
has separate buses for instructions and operands, and thus
fetching of an operand in each instruction in the MIU is
performed concurrently with an instruction fetch in the IRU.

The bit instructions need bitwise data and must access
the memory bitwisely. But usually in PLCs, the main
memory is made to have a byte or word boundary structure
due to the design complexity and cost. Therefore, to over-
come the incompatibility of the two addressing modes, the

PERFORMANCE EVALUATION AND VLSI DESIGN

Usually the performance of a PLC is calculated and
compared to that of other models with just the execution
time of bit instructions. This concept is similar to the MIPS
of general purpose processors. However, such a method is
somewhat far from a correct performance index. In a
commercial PLC, word instructions take a longer time than
do bit instructions, although bit instructions are more
frequently used. To calculate the performance more
accurately, the performance must be evaluated by the
execution time of mixed PLC instructions. In doing so,
because the PLCRISC has simple word instructions, the
word instructions of a PLC program must be translated into
several PLCRISC instructions. Table 5 shows translation
examples of several representative PLC instructions.

Based on the execution times of mixed PLC bit and word
instructions which are translated into PLCRISC instructions,
the performance of the PLCRISC is obtained by timing
simulations in a CAD environment as shown in Figure 10.
The more word instructions in a PLC program that are used,
the more PLCRISC instructions that are needed. Thus, the
performance is degraded. This result shows that the
PLCRISC is much faster than existing PLCs; for example,
1 kstep/ms for the Mitsubishi A series and 1.67 kstep/ms for
the Siemens $5-135U 14. In the simulation, the PLCRISC is
assumed to be running at a 16 MHz clock.

Table 5 Examples of PLC instruction translation

PLC Converted PLCRISC instructions
instructions

str rO01 str rO01 ; start rung

out r001 iniout r001 ; init out (read data)
out r001 ; out (modified write)

Ioad.I rO,w2 ; load a word from
memory

Ioad.I rl ,w3 ; load a word from
memory

add wl,w2,w3 add.w rl,r2 ; add word data
(w l=w2+w3) store.I wO,psw ; store PSW to memory

store.I wl ,r2 ; store the result to
memory

606 Microprocessors and Microsystems Volume 19 Number 10 December 1995

Implementation of a RISC microprocessor: G S Rho et al.

3

F i g u r e 10

7"-i

6 -

5 -

4 -

3 -

2 -

1-

0

O%

i i

.
I I

. 4. -I

. /J
I i

. -4- ~.
I I

10% 30% 50%
Percent of Word Instructions

Performan(e of the PLCRISC

The unit of the performance is ksteps/ms, in which 'step'
means the number of executed instructions. With the
performance index, the user can determine how many I/O
points the PLC processor can handle within a finite scan time.

The PLCRISC is developed in ASIC form and
implemented by VHDL (VHSIC Hardware Description
Language). Because VHDL is a design tool that uses a high
level language, the design time can be reduced and the
design is maintained efficiently. Recently, VHDL, which
was designed mainly as a simulation language, has been
used effectively as a synthesis language I~

In the design of the PLCRISC, after the functionalities of
the processor are simulated in the VHDL environment, the
circuits are made by VHDL synthesis. In the early stages of
the implementation, several blocks are divided according
to their functions. Among them the internal control part is
made by VHDL synthesis and the data path parts, including
the ALU, the multiplier and the barrel shifter, are
implemented by a data path compiler of the ASIC vendor.

To prove the validation of the operations of the PLCRISC,
a software simulator, named by PLCSIM, is implemented in
parallel with the processor design. The PLCSIM has a
graphical user interface based on an X-window system.
After the PLCSIM reads and executes the PLCRISC
programs, it produces the expected state of the processor at
the end of every instruction cycle. The results of the
simulator are compared with the simulation results of the
CAD tool to verify the functionality of the PLCRISC. The
simulator has an ability to randomize the data value
referred by the instructions and also the ability to debug the
entire internal states of the processor. Thus, it can be used
as a software development tool for PLC programming.

C O N C L U S I O N

In this paper, a special purpose RISC microprocessor for
programmable logic controllers is proposed. Through the
investigation of the features required for high performance
PLC processors and the analysis of existing PLC programs,
an instruction set is selected and the basic architecture is

suggested. Specifically, PLCRISC instructions significantly
reduce the overhead that arises when general purpose
microprocessors, which are designed for word instructions,
are used for PLCs, which predominantly operate with bit
instructions. The PLCRISC employs a four-stage pipeline,
separated external buses, and special hardware support for
the interaction between bit and word instructions, in order
to enhance the performance. Thus, it can execute PLC
instructions very fast and efficiently. The PLCRISC satisfies
the increasing needs of functionality and speed in industrial
sequential control fields and can be adopted in a large,
high-performance and high-speed PLCs.

The proposed PLCRISC processor has been evaluated
through simulation using VHDL. The simulation result shows
that this processor runs much faster than the microprocessors
used in commercial PLCs. The PLCRISC is under fabrication
in a 0.8 l~m. CMOS technology, and is shortly scheduled to be
implemented in a real commercial product.

REFERENCES

1 Warnock, I G Programmable Controllers: Operation and Applicati(m,
Prentice Hall, Englewood Cliffs, NJ 11988)

2 Kim, Jong-il, Park, J and Kwon, W H 'Archite(ture of a ladder solving
processor for programmable controllers' Micraprocessors Mkrosyst.
Vol 16 No 7 11992) pp 369-379

3 Murakoshi, H, Sugiyama, M, Ding, G, Oumi, T, Sekigu(hi, T and Dohi,
Y 'A high speed programmable (-ontroller based on Petri net' Pry(.
IECON (1991) pp 1966-1971

4 Hennessy, J L 'VLSI processor architecture' IEEE Trans. Comput. Vol
C33 No 1211985) pp1221 1246

5 Stallings, W 'Reduced instruction set computer architecture', Pro~. IEEE
Vol 76 No 1 11988) pp 58-75

6 Shimokawa, Y, Matsushita, T, Furuno, H an(] Shimanuki, Y 'A high-
performance VLSI chip of programmable controller and its language for
instrumentation and eleclric control' Pro(:. IECON {1991) pp 884-889.

7 Prv~rammable Controller~ Part 3: Pro~rammin~ Lan~tuay, es, IEC 11~1-
3, IEC[199~}

8 Samsung BRAIN SP('-Yt)O User's Manual. Sanlsung Aerospace
Industries 11990)

9 Koo, Kyeong-hoon, Rho, G S and Kwon, W H 'An architecture of the
RISC processor for programmable controllers' Technical Report 94-01,
Information Systems Laboratory, SNU, submitted to International
Conference on Industrial ElectronR s

1(1 Hennessy J L and Patterson D A Computer Ar(hitecture: A Quantitative
Approach, Morgan Kaufmann (1990)

11 Howard, E and Irissou, B 'A Mips R2000 Implementation' IEEE O~mput.
Fur. (1991) pp 46 54

12 Gray, J, Lenell, 1, Naylorr, A and Bagherzadeh, N 'Design and
implementation of the 'Tiny RISC' microprocessor' Micropro~essorg
Microsyst. Vol 16 No 4 11992) pp 187 19~

13 Anido, M L and Allerton, D J 'RISC design for (omputer image genera-
tion' Microprocessors Microsyst. Vo] 14 No 6 11991/) pp ~41-~;50

14 'PLCs & positioning systems' Drives Contr. Vol 9 No 6 (Ju]y/August
199~)

15 Camposano, R, Saunders L F and Tabet, R M 'VHDL as input for high-
level synthesis' IEEE Des. Test Comput. (1991)pp 4~ 49

Gah Seon Rho was born in Seoul, Korea on It)
February 1965. He received BS and MS degrees
in control and instrumentation engineering from
Seoul National University in 1988 and 1990,
respectively. He is currently a PhD student in
the Department of Omtrol and hrstrumentation
Engineerinp,, Seoul National University. His
main research interests are (omputer
applications for t,~ctory automation, computer
architecture, real-time W~tems and discrete
event ~;ystems.

Microprocessors and Microsystems Volume 19 Number 10 December 1995 607

Implementation of a RISC microprocessor: G S Rho et al.

Kyeong-hoon Koo was born in 5eoul, Korea on
12 September 1967. He received BS and MS
degrees in control and instrumentation
engineering from Seoul National University in
1990 and 1992 respectively. He is currently a
PhD student in the Department of Control and
Instrumentation Engineering, Seoul National
University. His main research interests are
computer applications for factory automation
and real-time control systems.

Yeong-gi Kim was born in Korea, 196L He
received a BS degree in electronic engineering
from Kyeong-buk National University, Daegoo,
Korea in 1986. Since 1986, he has been at
Samsung Aerospace Industries, Ltd., Korea and
is currently a senior engineer. He and his
colleagues are now developing a medium-scale
PLC. His current interests include industrial
automation application and digital system
design.

Naehyuck Chang was born in Seoul, Korea on
19 March 1967. He received BS and MS degrees
in control and instrumentation engineering from
Seoul National University in 1989 and 1992,
respectively. He is currently a PhD student it]
the Department of Control and Instrumentation
Engineering, Seoul National University. His
main research interests are computer
applications for factory automation, computer
graphics, real-time systems and discrete event
systems.

Jaehyun Pack was born in Seoul, Korea on 8
October 1963. He received BS, MS and PhD
degrees, all in control and instrumentation engi-
neering, from Seoul National University in 1986,
1988 and 199.3, respectively. He is currently a
research fellow in the Electrical Engineering and
Computer Science Department of the University
of Michigan. He and his colleagues are currently
building a mesh multicomputer, called HARTS,
and an open architecture machining controller,
called UMOAC. HLs main research interests are

computer architectures for real-time control systems, computer
applications for factory automation, and discrete event systems.

Wook Hyun Kwon was born in Korea on 1 ~)
January 1943. He received BS and MS degrees
in electrical engineering from Seoul National
University, Seoul, Korea, in 1966 and 1972,
respectively. He received a PhD in control t?om
Brown University in 1975. From 1975 t~; 1 ~76,
he was a research associate at Brown University.
From 1976 to 1977, he was an adjunct professor
at University of Iowa. Since 1977, he has been
with Seoul National University, now as a
pr~;fessor. From 1~)81 to 1982, he was a visitit]g

assistant professor at Stanford University. Since 1991, he has been the
directc)r o f Engineering Research Center of Advanced Control and
Instrumentation. His main research interests are currently multivariable
robust and predictive controls, discrete event system, automation
network and (omputer applications for factory automation.

608 Microprocessors and Microsystems Volume 19 Number 10 December 1995

